Selection of Scale-Invariant Parts for Object Class Recognition

نویسندگان

  • Gyuri Dorkó
  • Cordelia Schmid
چکیده

This paper introduces a novel method for constructing and selecting scale-invariant object parts. Scale-invariant local descriptors are first grouped into basic parts. A classifier is then learned for each of these parts, and feature selection is used to determine the most discriminative ones. This approach allows robust part detection, and it is invariant under scale changes—that is, neither the training images nor the test images have to be normalized. The proposed method is evaluated in car detection tasks with significant variations in viewing conditions, and promising results are demonstrated. Different local regions, classifiers and feature selection methods are quantitatively compared. Our evaluation shows that local invariant descriptors are an appropriate representation for object classes such as cars, and it underlines the importance of feature selection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Class Recognition Using Discriminative Local Features

In this paper, we introduce a scale-invariant feature selection method that learns to recognize and detect object classes from images of natural scenes. The first step of our method consists of clustering local scale-invariant descriptors to characterize object class appearance. Next, we train part classifiers on the groups, and perform feature selection to determine the most discriminative par...

متن کامل

Object Class Recognition by Unsupervised Scale-Invariant Learning

We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and relative scale. An entropy-based feature detector is used to select regions and their scale withi...

متن کامل

شناسایی نوع و مدل وسیله نقلیه با استفاده از مجموعه بخش‌های متمایز‌کننده

In fine-grained recognition, the main category of object is well known and the goal is to determine the subcategory or fine-grained category. Vehicle make and model recognition (VMMR) is a fine-grained classification problem. It includes several challenges like the large number of classes, substantial inner-class and small inter-class distance. VMMR can be utilized when license plate numbers ca...

متن کامل

On Estimation Following Selection with Applications on k-Records and Censored Data

Let X1 and X2 be two independent random variables from gamma populations Pi1,P2 with means alphaθ1 and alphaθ2 respectively, where alpha(> 0) is the common known shape parameter and θ1 and θ2 are scale parameters. Let X(1) ≤ X(2) denote the order statistics ofX1 and X2. Suppose that the population corresponding to the largest X(2) (or the smallest X(1)) observation is selected. The problem ofin...

متن کامل

Sift-based Measurements for Vehicle Model Recognition

– A SIFT-based Vehicle Manufacturer and Model Recognition (VMMR) method was utilized to tackle the problem of vehicle security. Distinctive parts of the vehicle frontal view such as the headlights, grill and logo area were segmented. A series of experiments were conducted in a variety of outdoor conditions, where a query image that was rotated, scaled, shifted or set in different lighting condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003